论文标题

通过模型和参数空间缩小来增强形状设计问题的CFD预测

Enhancing CFD predictions in shape design problems by model and parameter space reduction

论文作者

Tezzele, Marco, Demo, Nicola, Stabile, Giovanni, Mola, Andrea, Rozza, Gianluigi

论文摘要

在这项工作中,我们提出了一条高级计算管道,用于近似和预测参数化的机翼轮廓的升力系数。非侵入性还原订单方法基于动态模式分解(DMD),并与动态活动子空间(DYAS)结合起来,以增强目标函数的未来状态预测并降低参数空间维度。该管道基于通过在湍流中应用有限体积方法进行的高保真模拟,以及通过径向函数插值技术的自动筛网变形。由于DMD的应用,拟议的管道能够节省总体计算资源的1/3。此外,利用DYAS并在较低的维空间上执行回归,导致在仅使用DMD的情况下,随时间变化的升力系数近似的相对误差降低了一个因子2。

In this work we present an advanced computational pipeline for the approximation and prediction of the lift coefficient of a parametrized airfoil profile. The non-intrusive reduced order method is based on dynamic mode decomposition (DMD) and it is coupled with dynamic active subspaces (DyAS) to enhance the future state prediction of the target function and reduce the parameter space dimensionality. The pipeline is based on high-fidelity simulations carried out by the application of finite volume method for turbulent flows, and automatic mesh morphing through radial basis functions interpolation technique. The proposed pipeline is able to save 1/3 of the overall computational resources thanks to the application of DMD. Moreover exploiting DyAS and performing the regression on a lower dimensional space results in the reduction of the relative error in the approximation of the time-varying lift coefficient by a factor 2 with respect to using only the DMD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源