论文标题

人脑连接经济学经济学的有效编码

Efficient Coding in the Economics of Human Brain Connectomics

论文作者

Zhou, Dale, Lynn, Christopher W., Cui, Zaixu, Ciric, Rastko, Baum, Graham L., Moore, Tyler M., Roalf, David R., Detre, John A., Gur, Ruben C., Gur, Raquel E., Satterthwaite, Theodore D., Bassett, Danielle S.

论文摘要

在系统神经科学中,大多数模型认为大脑区域在效率的限制下传达信息。然而,以分层组织和高度连接的枢纽为特征的结构性大脑网络中有效沟通的证据仍然很少。有效编码的原则提出,大脑以代谢经济或压缩形式传输最大信息,以改善未来的行为。为了确定结构连通性如何支持有效的编码,我们开发了一个理论,该理论指定大脑区域之间的最低消息传输速率以实现预期的保真度,并且我们基于随机步行通信动态从理论中测试了五个预测。在此过程中,我们介绍了压缩效率的指标,该指标量化了结构网络中有损压缩和传播保真度之间的权衡。在大量的青年样本中(n = 1,042;年龄8-23岁),我们分析了使用脑血流进行运营的扩散加权成像和代谢支出而得出的结构网络。我们表明,结构网络罢工压缩效率与理论预测一致。我们发现,压缩效率优先于发展,在代谢资源和髓鞘际指南沟通时提高忠诚度,解释了层次组织的优势,将较高的投入保真度与面积不成比例的扩展联系起来,并表明HUBS通过有损压缩将信息整合在一起。最后,压缩效率是对行为的预测 - 构成常规的度量 - 包括执行功能,记忆,复杂的推理和社会认知在内的认知领域。我们的发现阐明了宏观连接如何支持有效的编码,并用于前景通信过程,这些过程利用了受网络连接约束的随机步行动态。

In systems neuroscience, most models posit that brain regions communicate information under constraints of efficiency. Yet, evidence for efficient communication in structural brain networks characterized by hierarchical organization and highly connected hubs remains sparse. The principle of efficient coding proposes that the brain transmits maximal information in a metabolically economical or compressed form to improve future behavior. To determine how structural connectivity supports efficient coding, we develop a theory specifying minimum rates of message transmission between brain regions to achieve an expected fidelity, and we test five predictions from the theory based on random walk communication dynamics. In doing so, we introduce the metric of compression efficiency, which quantifies the trade-off between lossy compression and transmission fidelity in structural networks. In a large sample of youth (n = 1,042; age 8-23 years), we analyze structural networks derived from diffusion weighted imaging and metabolic expenditure operationalized using cerebral blood flow. We show that structural networks strike compression efficiency trade-offs consistent with theoretical predictions. We find that compression efficiency prioritizes fidelity with development, heightens when metabolic resources and myelination guide communication, explains advantages of hierarchical organization, links higher input fidelity to disproportionate areal expansion, and shows that hubs integrate information by lossy compression. Lastly, compression efficiency is predictive of behavior--beyond a conventional metric--for cognitive domains including executive function, memory, complex reasoning, and social cognition. Our findings elucidate how macroscale connectivity supports efficient coding, and serve to foreground communication processes that utilize random walk dynamics constrained by network connectivity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源