论文标题
离子量子置量的集成多波长控制
Integrated multi-wavelength control of an ion qubit
论文作者
论文摘要
原子系统控制技术的整体整合是通往量子计算机和便携式量子传感器开发的有前途的途径。被困的原子离子构成了高保真量子信息处理器和高精确光学时钟的基础。但是,当前的实现依赖于自由空间光学来控制离子控制,从而限制了其可移植性和可扩展性。在这里,我们使用集成的波导和光栅耦合器演示了表面电极离子陷阱芯片,该芯片提供了电离,冷却,相干操作以及SR+ Qubits的量子态制备和量子态制备所需的所有光长度。从紫罗兰到红外的激光灯通过光纤阵列耦合到芯片上,创建了固有稳定的光路,我们用来证明量子相干性对平台振动有弹性。 CMOS兼容的集成 - 光子表面陷阱制造,健壮的包装和增强的量子量相干性的演示是开发便携式捕获的量子量子传感器和时钟的关键进步,从而为量子信息处理系统中大量离子的完全控制提供了一种方式。
Monolithic integration of control technologies for atomic systems is a promising route to the development of quantum computers and portable quantum sensors. Trapped atomic ions form the basis of high-fidelity quantum information processors and high-accuracy optical clocks. However, current implementations rely on free-space optics for ion control, which limits their portability and scalability. Here we demonstrate a surface-electrode ion-trap chip using integrated waveguides and grating couplers, which delivers all the wavelengths of light required for ionization, cooling, coherent operations, and quantum-state preparation and detection of Sr+ qubits. Laser light from violet to infrared is coupled onto the chip via an optical-fiber array, creating an inherently stable optical path, which we use to demonstrate qubit coherence that is resilient to platform vibrations. This demonstration of CMOS-compatible integrated-photonic surface-trap fabrication, robust packaging, and enhanced qubit coherence is a key advance in the development of portable trapped-ion quantum sensors and clocks, providing a way toward the complete, individual control of larger numbers of ions in quantum information processing systems.