论文标题
基于多级角度的学习,用于估计使用审查数据的最佳动态治疗方案
Multicategory Angle-based Learning for Estimating Optimal Dynamic Treatment Regimes with Censored Data
论文作者
论文摘要
最佳动态治疗方案(DTR)由一系列决策规则组成,以最大程度地提高长期益处,这适用于诸如HIV感染或癌症之类的慢性疾病。在本文中,我们开发了一种基于角度的新方法来搜索在多级治疗框架下以获取生存数据的最佳DTR。所提出的方法靶向DTR后患者的条件存活功能最大化。与大多数现有的方法相反,旨在最大化二进制治疗框架下预期生存时间的方法,该建议的方法解决了多个审查数据的多级治疗问题。具体而言,提出的方法通过将多个阶段的决策规则估算为单个多级分类算法而不施加其他约束,从而获得了最佳DTR,这在计算上也更有效且健壮。从理论上讲,我们在规律性条件下建立了拟议方法的Fisher一致性。我们的数值研究表明,所提出的方法在最大化条件生存函数方面优于竞争方法。我们将提出的方法应用于两个实际数据集:弗雷明汉心脏研究数据和获得的免疫缺陷综合征(AIDS)临床数据。
An optimal dynamic treatment regime (DTR) consists of a sequence of decision rules in maximizing long-term benefits, which is applicable for chronic diseases such as HIV infection or cancer. In this paper, we develop a novel angle-based approach to search the optimal DTR under a multicategory treatment framework for survival data. The proposed method targets maximization the conditional survival function of patients following a DTR. In contrast to most existing approaches which are designed to maximize the expected survival time under a binary treatment framework, the proposed method solves the multicategory treatment problem given multiple stages for censored data. Specifically, the proposed method obtains the optimal DTR via integrating estimations of decision rules at multiple stages into a single multicategory classification algorithm without imposing additional constraints, which is also more computationally efficient and robust. In theory, we establish Fisher consistency of the proposed method under regularity conditions. Our numerical studies show that the proposed method outperforms competing methods in terms of maximizing the conditional survival function. We apply the proposed method to two real datasets: Framingham heart study data and acquired immunodeficiency syndrome (AIDS) clinical data.