论文标题

双方图形规则表示的猜想

A conjecture on bipartite graphical regular representations

论文作者

Du, Jia-Li, Feng, Yan-Quan, Spiga, Pablo

论文摘要

在本文中,我们关注的是有限群体的分类,该组承认双方drr和二分GRR。 首先,我们发现有限组的自然障碍因不承认两分GRR。然后,我们对满足这种自然障碍的有限群体进行完整的分类,因此不承认双方GRR。基于这些结果和一些广泛的计算机计算,我们指出了一个猜想,目的是对有限组进行完整的分类,该组允许双方GRR。 接下来,我们证明了大多数有限群体不承认本文中发现的二分GRR的存在。实际上,我们证明了一个更强大的结果:我们在这些组上对两分的DRR进行了渐近枚举。同样,基于这些结果和一些广泛的计算机计算,我们指出了一个猜想,目的是对有限组进行完整的分类,该群体承认双方DRR。

In this paper we are concerned with the classification of the finite groups admitting a bipartite DRR and a bipartite GRR. First, we find a natural obstruction in a finite group for not admitting a bipartite GRR. Then we give a complete classification of the finite groups satisfying this natural obstruction and hence not admitting a bipartite GRR. Based on these results and on some extensive computer computations, we state a conjecture aiming to give a complete classification of the finite groups admitting a bipartite GRR. Next, we prove the existence of bipartite DRRs for most of the finite groups not admitting a bipartite GRR found in this paper. Actually, we prove a much stronger result: we give an asymptotic enumeration of the bipartite DRRs over these groups. Again, based on these results and on some extensive computer computations, we state a conjecture aiming to give a complete classification of the finite groups admitting a bipartite DRR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源