论文标题

计算准同质地图细菌的不变$ j $的公式

A formula to calculate the invariant $J$ of a quasi-homogeneous map germ

论文作者

da Silva, Otoniel Nogueira

论文摘要

在这项工作中,我们考虑了一个准同质的,corank $ 1 $,有限确定的地图germ $ f $从$(\ mathbb {c}^2,0)$到$(\ Mathbb {c}^3,0)$。 We consider the invariants $m(f(D(f))$ and $J$, where $m(f(D(f))$ denotes the multiplicity of the image of the double point curve $D(f)$ of $f$ and $J$ denotes the number of tacnodes that appears in a stabilization of the transversal slice curve of $f(\mathbb{C}^2)$. We present formulas to计算$ m(f(d(f))$和$ j $的权重和$ f $的程度。

In this work, we consider a quasi-homogeneous, corank $1$, finitely determined map germ $f$ from $(\mathbb{C}^2,0)$ to $(\mathbb{C}^3,0)$. We consider the invariants $m(f(D(f))$ and $J$, where $m(f(D(f))$ denotes the multiplicity of the image of the double point curve $D(f)$ of $f$ and $J$ denotes the number of tacnodes that appears in a stabilization of the transversal slice curve of $f(\mathbb{C}^2)$. We present formulas to calculate $m(f(D(f))$ and $J$ in terms of the weights and degrees of $f$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源