论文标题

在分布式的在线凸优化时,具有sublrinear动态遗憾和适合

On Distributed Online Convex Optimization with Sublinear Dynamic Regret and Fit

论文作者

Sharma, Pranay, Khanduri, Prashant, Shen, Lixin, Bucci Jr., Donald J., Varshney, Pramod K.

论文摘要

在这项工作中,我们考虑了分布式的在线凸优化问题,并具有随着时间的变化(可能具有对手)的约束。一组节点,共同旨在最大程度地减少全局目标函数,即局部凸功能的总和。采取行动后,每个时间都在本地向节点揭示了目标和约束函数。自然,约束不能立即满足。因此,从长远来看,我们重新制定了问题以满足这些限制。为此,我们提出了一种基于分布式的基于双镜下的方法,其中原始更新是在所有节点的本地进行的。接下来是通过与直接邻居进行通信,与本地节点共享和混合原始变量。为了量化所提出的算法的性能,我们利用了充满挑战但更现实的遗憾和合适的指标。与最佳动态策略相比,动态遗憾衡量算法产生的累积损失。另一方面,FIT可以衡量长期累积约束违规行为。在不假定限制性的Slater条件下,我们表明所提出的算法会在轻度,常用的假设下实现sublrinear的遗憾,并适合宽松的假设。

In this work, we consider a distributed online convex optimization problem, with time-varying (potentially adversarial) constraints. A set of nodes, jointly aim to minimize a global objective function, which is the sum of local convex functions. The objective and constraint functions are revealed locally to the nodes, at each time, after taking an action. Naturally, the constraints cannot be instantaneously satisfied. Therefore, we reformulate the problem to satisfy these constraints in the long term. To this end, we propose a distributed primal-dual mirror descent based approach, in which the primal and dual updates are carried out locally at all the nodes. This is followed by sharing and mixing of the primal variables by the local nodes via communication with the immediate neighbors. To quantify the performance of the proposed algorithm, we utilize the challenging, but more realistic metrics of dynamic regret and fit. Dynamic regret measures the cumulative loss incurred by the algorithm, compared to the best dynamic strategy. On the other hand, fit measures the long term cumulative constraint violations. Without assuming the restrictive Slater's conditions, we show that the proposed algorithm achieves sublinear regret and fit under mild, commonly used assumptions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源