论文标题
Stratamatch:使用飞行员设计的预后计分式化
stratamatch: Prognostic ScoreStratification using a Pilot Design
论文作者
论文摘要
最佳倾向得分匹配已成为观察数据的因果推断研究最普遍的方法之一。但是,对倾向得分匹配的统计特性的出色批评对该技术的统计效率产生了疑问,并且最佳匹配与大数据集的可扩展性较差使得这种方法不方便即使对于现代观察数据中越来越普遍的样本量不可避免的是不可行。 Stratamatch软件包为“分层匹配设计”提供了实施支持和诊断,这种方法可以解决这两种问题,并具有最佳的倾向得分匹配,以匹配大样本的观测研究。首先,分层数据可以使大型数据集的更多计算有效匹配。其次,Stratamatch实现了一种“试点设计”方法,以便按预后分数进行分层,这可能会提高效果估计的精度并增加了无法衡量的混杂的灵敏度分析中的功率。
Optimal propensity score matching has emerged as one of the most ubiquitous approaches for causal inference studies on observational data; However, outstanding critiques of the statistical properties of propensity score matching have cast doubt on the statistical efficiency of this technique, and the poor scalability of optimal matching to large data sets makes this approach inconvenient if not infeasible for sample sizes that are increasingly commonplace in modern observational data. The stratamatch package provides implementation support and diagnostics for `stratified matching designs,' an approach which addresses both of these issues with optimal propensity score matching for large-sample observational studies. First, stratifying the data enables more computationally efficient matching of large data sets. Second, stratamatch implements a `pilot design' approach in order to stratify by a prognostic score, which may increase the precision of the effect estimate and increase power in sensitivity analyses of unmeasured confounding.