论文标题

液 - 液体微相分离导致形成膜无机细胞器

Liquid-liquid microphase separation leads to formation of membraneless organelles

论文作者

Ranganathan, Srivastav, Shakhnovich, Eugene

论文摘要

蛋白质和核酸可以在体外和体内自发地自发地分成膜的液滴状隔室。这些液滴的关键成分是多价蛋白质,它们具有多个具有特定相互作用伙伴(数量决定蛋白质的总价值)的粘合剂结构域,这些蛋白质被无序区域分离。在这里,使用多尺度模拟,我们表明,这种蛋白质会自组织为各种大小的微相分离的液滴,而不是类似叶状的宏观相分离的均聚物或平衡物理凝胶的平衡状态。我们表明,微相分离状态是两个竞争过程之间相互作用的动态结果:蛋白质之间的扩散限制性接触和小簇内的动力学之间的动力学,导致可用的阀门耗尽了可用的相互作用域,使所有人都专门进行交互的域在较小的群集中找到了相互作用的伴侣,从而导致了较小的相位分离。我们首先将这些多价链建模为具有多个粘合剂结构域的珠子弹簧聚合物,这些聚合物由半柔性接头分开,并使用langevin动力学(LD)来评估关键时限如何依赖于关联聚合物的分子特性。使用LD模拟的时间尺度,我们开发了一个粗粒的动力学模型,以更长的时间研究这种现象。与LD模拟一致,仅在高浓度和较大的相互作用价值下观察到宏观相分离状态。此外,在簇大小接近宏观分离的机制中,凝结相在动态固体状态上变为固体,这表明它可能不再具有生物学功能。因此,微相分离状态可能是蛋白质与贴纸架构形成的功能液滴的标志。

Proteins and nucleic acids can spontaneously self-assemble into membraneless droplet-like compartments, both in vitro and in vivo. A key component of these droplets are multi-valent proteins that possess several adhesive domains with specific interaction partners (whose number determines total valency of the protein) separated by disordered regions. Here, using multi-scale simulations we show that such proteins self-organize into micro-phase separated droplets of various sizes as opposed to the Flory-like macro-phase separated equilibrium state of homopolymers or equilibrium physical gels. We show that the micro-phase separated state is a dynamic outcome of the interplay between two competing processes: a diffusion-limited encounter between proteins, and the dynamics within small clusters that results in exhaustion of available valencies whereby all specifically interacting domains find their interacting partners within smaller clusters, leading to arrested phase separation. We first model these multi-valent chains as bead-spring polymers with multiple adhesive domains separated by semi-flexible linkers and use Langevin Dynamics (LD) to assess how key timescales depend on the molecular properties of associating polymers. Using the time-scales from LD simulations, we develop a coarse-grained kinetic model to study this phenomenon at longer times. Consistent with LD simulations, the macro-phase separated state was only observed at high concentrations and large interaction valencies. Further, in the regime where cluster sizes approach macro-phase separation, the condensed phase becomes dynamically solid-like, suggesting that it might no longer be biologically functional. Therefore, the micro-phase separated state could be a hallmark of functional droplets formed by proteins with the sticker-spacer architecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源