论文标题
一种经验的贝叶斯方法,用于建模天气对农作物产量的影响:玉米在美国
An empirical, Bayesian approach to modelling the impact of weather on crop yield: maize in the US
论文作者
论文摘要
我们采用经验,数据驱动的方法来描述农作物的产量是每月温度和降水的函数,通过采用通过贝叶斯推论确定的参数的生成概率模型。我们的方法用于1981年至2014年美国玉米带的状态级玉米产量和气象数据,作为典范,但很容易转移到其他农作物,位置和空间尺度上。对许多模型进行的实验表明,玉米的生长速率可以以二维高斯温度和降水功能为特征,并且在整个生长期间积累的每月贡献。这种方法解释了对各个气象变量的非线性增长反应,并允许它们之间的相互作用。我们的模型正确地确定了在收获前六个月中温度和降水对产量的影响最大,这与美国玉米的典型生长季节(4月至9月)一致。每月平均温度18-19 $^\ Circ $ c的最大增长率发生,对应于每日最高温度为24-25 $^\ CIRC CIRC $ C(与以前的工作一致)和每月的总降水量为115毫米。我们的方法还提供了一种在没有适应性措施的情况下调查气候变化对当前玉米品种的影响的自谐方法。相对于1981 - 2014年,保持降水量和生长面积固定,温度升高$ 2^\ circe $ c,导致平均产量下降8%,而产量差异则增加了3倍。因此,我们提供了灵活的数据驱动的框架,用于探索自然气候变化和对全球范围内的大量作用的影响。与其他方法一致,这可以有助于开发适应策略,以确保气候变化的粮食安全。
We apply an empirical, data-driven approach for describing crop yield as a function of monthly temperature and precipitation by employing generative probabilistic models with parameters determined through Bayesian inference. Our approach is applied to state-scale maize yield and meteorological data for the US Corn Belt from 1981 to 2014 as an exemplar, but would be readily transferable to other crops, locations and spatial scales. Experimentation with a number of models shows that maize growth rates can be characterised by a two-dimensional Gaussian function of temperature and precipitation with monthly contributions accumulated over the growing period. This approach accounts for non-linear growth responses to the individual meteorological variables, and allows for interactions between them. Our models correctly identify that temperature and precipitation have the largest impact on yield in the six months prior to the harvest, in agreement with the typical growing season for US maize (April to September). Maximal growth rates occur for monthly mean temperature 18-19$^\circ$C, corresponding to a daily maximum temperature of 24-25$^\circ$C (in broad agreement with previous work) and monthly total precipitation 115 mm. Our approach also provides a self-consistent way of investigating climate change impacts on current US maize varieties in the absence of adaptation measures. Keeping precipitation and growing area fixed, a temperature increase of $2^\circ$C, relative to 1981-2014, results in the mean yield decreasing by 8\%, while the yield variance increases by a factor of around 3. We thus provide a flexible, data-driven framework for exploring the impacts of natural climate variability and climate change on globally significant crops based on their observed behaviour. In concert with other approaches, this can help inform the development of adaptation strategies that will ensure food security under a changing climate.