论文标题

与硅碳化物中的硅空位中心相关的自旋控制生成无法区分的光子

Spin-controlled generation of indistinguishable and distinguishable photons from silicon vacancy centres in silicon carbide

论文作者

Morioka, Naoya, Babin, Charles, Nagy, Roland, Gediz, Izel, Hesselmeier, Erik, Liu, Di, Joliffe, Matthew, Niethammer, Matthias, Dasari, Durga, Vorobyov, Vadim, Kolesov, Roman, Stöhr, Rainer, Ul-Hassan, Jawad, Son, Nguyen Tien, Ohshima, Takeshi, Udvarhelyi, Péter, Thiering, Gergő, Gali, Adam, Wrachtrup, Jörg, Kaiser, Florian

论文摘要

结合无法区分光子生成和基于自旋的量子信息处理的量子系统对于远程量子应用和网络至关重要。但是,在可扩展平台中识别合适的系统仍然是一个挑战。在这里,我们研究了碳化硅中的硅空置中心,并通过连贯的自旋操作证明了无法区分和可区分的光子的发射。使用强烈的异源激发并从超稳定的零孔线光学转变中收集光子,我们在Hong-Ou-Mandel型实验中显示了接近90%的两光子干扰对比度。此外,我们利用该系统的亲密自旋关系与连续发射光子的颜色和无法区分的自旋关系。我们的结果为系统的自旋光子体物理学提供了深刻的了解,并强调了工业兼容的碳化硅平台的潜力,用于基于测量的纠缠分布和光子群集状态生成。基于最近证明的单个核自旋的额外耦合与量子寄存器将进一步允许高级网络相关的量子信息处理,例如误差校正和纠缠净化。

Quantum systems combining indistinguishable photon generation and spin-based quantum information processing are essential for remote quantum applications and networking. However, identification of suitable systems in scalable platforms remains a challenge. Here, we investigate the silicon vacancy centre in silicon carbide and demonstrate controlled emission of indistinguishable and distinguishable photons via coherent spin manipulation. Using strong off-resonant excitation and collecting photons from the ultra-stable zero-phonon line optical transitions, we show a two-photon interference contrast close to 90% in Hong-Ou-Mandel type experiments. Further, we exploit the system's intimate spin-photon relation to spin-control the colour and indistinguishability of consecutively emitted photons. Our results provide a deep insight into the system's spin-phonon-photon physics and underline the potential of the industrially compatible silicon carbide platform for measurement-based entanglement distribution and photonic cluster state generation. Additional coupling to quantum registers based on recently demonstrated coupled individual nuclear spins would further allow for high-level network-relevant quantum information processing, such as error correction and entanglement purification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源