论文标题

产品图的诱导子图和黄定理的概括

Induced subgraphs of product graphs and a generalization of Huang's theorem

论文作者

Hong, Zhen-Mu, Lai, Hong-Jian, Liu, Jian-Bing

论文摘要

最近,黄表明,每$(2^{n-1} +1)$ - 顶点诱导的$ n $二维超轴的子图具有最高学位,至少$ \ sqrt {n} $在[数学年鉴,190(2019),2019年(2019年),949---955]。在本文中,我们讨论了笛卡尔产品图和半肌产品图的诱导子图,以概括黄的结果。令$γ_1$为连接的签名的订单$ n $的签名二角图,$γ_2$是订单$ m $的连接签名图。通过定义$γ_1$和$γ_2$的两种签名产品,由$γ_1\ widetilde {\ box}γ_2$和$γ_1\ widetilde {\ bowtie}γ_2$,我们表明,如果$γ_1$和$γ_2$ eig, $ \pmθ_2$分别,然后每个$(\ frac {1} {2} mn+1)$ - 顶点诱导的子图的$γ_1\ widetilde {\ box}γ_2$(sives.up $γ_1 $ \ sqrt {θ_1^2+θ_2^2} $(resp。$ \ sqrt {(θ_1^2+1)θ_2^2} $)。此外,我们讨论了$γ_1\ widetilde {\ box}γ_2$和$γ_1\ widetilde {\ bowtie}γ_2$的特征值,并获得足够和必要的条件,使得$γ_1\ \ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ $γ_1\ widetilde {\ bowtie}γ_2$是对称的,从中,我们从最大程度的诱导子图中获得了更一般的结果。

Recently, Huang showed that every $(2^{n-1}+1)$-vertex induced subgraph of the $n$-dimensional hypercube has maximum degree at least $\sqrt{n}$ in [Annals of Mathematics, 190 (2019), 949--955]. In this paper, we discuss the induced subgraphs of Cartesian product graphs and semi-strong product graphs to generalize Huang's result. Let $Γ_1$ be a connected signed bipartite graph of order $n$ and $Γ_2$ be a connected signed graph of order $m$. By defining two kinds of signed product of $Γ_1$ and $Γ_2$, denoted by $Γ_1\widetilde{\Box}Γ_2$ and $Γ_1\widetilde{\bowtie} Γ_2$, we show that if $Γ_1$ and $Γ_2$ have exactly two distinct adjacency eigenvalues $\pmθ_1$ and $\pmθ_2$ respectively, then every $(\frac{1}{2}mn+1)$-vertex induced subgraph of $Γ_1\widetilde{\Box}Γ_2$ (resp. $Γ_1\widetilde{\bowtie} Γ_2$) has maximum degree at least $\sqrt{θ_1^2+θ_2^2}$ (resp. $\sqrt{(θ_1^2+1)θ_2^2}$). Moreover, we discuss the eigenvalues of $Γ_1\widetilde{\Box} Γ_2$ and $Γ_1\widetilde{\bowtie} Γ_2$ and obtain a sufficient and necessary condition such that the spectrum of $Γ_1\widetilde{\Box}Γ_2$ and $Γ_1\widetilde{\bowtie}Γ_2$ are symmetric, from which we obtain more general results on maximum degree of the induced subgraphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源